Abstract

Stiffened fuselage panels with laminated constructions play an increasing role in aircraft design. The static behaviour through the buckling- and post-buckling regime until failure has to be established. Apart from analytical calculations, experimental tests for different load combinations are indespensible, both of which are expensive and time consuming. The virtual testing described here is based on a development project aiming at reducing the amount of experimental tests, and narrowing the numerical predictions to experimental results. A tool developed for parametric modelling and simulation of test shells is discussed. The numerical model is based on layered shell elements in ANSYS and for special purposes in LS-DYNA. It is outlined how far the behaviour of laminates (interaction of different and anisotropic materials, delamination and splices) can be simulated in this context. Results are given for welded panels and for fibre metal laminate panels. Comparison with experimental data is made. Recommendations for future research is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.