Abstract

Purpose – Impact and fatigue are critical loading conditions for composite aerostructures. Compression behavior after impact and fatigue is a weak point for composite fuselage panels. The purpose of this paper is to characterize experimentally the compression behavior of carbon fiber reinforced plastic (CFRP) stiffened fuselage panels after impact and fatigue. Design/methodology/approach – In total, three panels were manufactured and tested. The first panel was tested quasi-statically to measure the reference compression behavior. The second panel was subjected to impact so as to create barely visible impact damage (BVID) at different locations, then to fatigue and finally to quasi-static compression. Finally, the third panel was subjected to impact so as to create visible impact damage (VID) at different locations and then to quasi-static compression. The panels were tested using ultrasound inspection just after manufacturing to check material quality and between different tests to detect impact and fatigue damage accumulation. During tests the mechanical behavior of the panel was monitored using an optical displacement measurement system. Findings – Experimental results show that the presence of impact damage significantly degrades the compression behavior of the panels. Moreover, the combined effect of BVID and fatigue was proven more severe than VID. Originality/value – The paper gives information about the compression after impact and fatigue behavior of CFRP fuselage stiffened panels, which represent the most realistic loading scenario of composite aerostructures, and describes an integrated experimental procedure for obtaining such information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.