Abstract

The decrease in the quality of recycled aggregate due to an increase in the number of recycling is a primary factor that limits the multi-recycling of concrete. This degradation adversely affects concrete performance; thus, the characteristics of recycled aggregate should be considered during the mix design stage, but little research has taken that into account. This study investigates the effect of the equivalent mortar volume (EMV) mix design on some physical, mechanical and durability properties of concrete made of multiple recycled coarse aggregates at 50% and 100% replacement ratios compared to concrete made by the conventional mix design (CMD). The results showed that the performances of concrete by the CMD decreased with an increasing number of recycling cycles. The properties of EMV-based concrete deteriorated with an increase in the number of recycling cycles at 100% replacement ratio due to poor workability caused by a shortage of fresh mortar. However, at 50% replacement, the EMV-based concrete exhibited similar performance across the three cycles of recycling, as well as improved properties over natural aggregate concrete. This study demonstrated that an appropriate mix design and optimal aggregate replacement ratio can offset the property loss of multiple recycled aggregate concrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.