Abstract

To make a better understanding of the mechanical characteristics of the surrounding rocks in the tailentry and headentry with different coal seam thickness at fully mechanized top-coal caving face (FMTC face), the stress transition and displacement around the periphery of the gateways with different coal thicknesses were investigated in details by means of in situ measurement and 3-D numerical simulation. The research shows that the stresses decrease in the two spallings of the headentry and floor at goaf with the increase in mining thickness. The roof pressure in the gates does not change obviously with the coal thickness, but the thicker the coal seam is, the farther the maximum stress will apply to the coal rib at the working face. The vertical stress is higher than the horizontal stress at two spallings of the gate, while its horizontal stress is higher than the vertical stress at the roof. The relative displacement between the roof and floor and the two spallings in the gateways increases gradually with the increase in coal seam thickness in a definite range in front of the face. Near the mining face, the stress decreases in the surrounding rock of the gates, while the deformation appears the most intensive. It is proposed that the support concept to the tailentry and headentry should be changed from loading control to deformation control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.