Abstract

An experimental investigation is conducted to study the flexural fatigue performance of steel fibre reinforced concrete containing fly ash (FA), silica fume (SF), metakaolin (MK) and limestone powder (LP) as mineral additions in terms of theoretical fatigue lives. Seven mix combinations are prepared by replacing 30 % of cement by weight with FA, SF, MK and LP in different proportions to form binary and ternary blend systems. Rectangular corrugated steel fibres at 1.0 % volume fraction are incorporated in all seven mix combinations. Beam specimens are tested at four fatigue stress levels ranging from 0.90 to 0.75. The Weibull distribution is employed to incorporate the failure probabilities into the fatigue life data of all mix combinations. The theoretical fatigue lives of all mix combinations are calculated using single-logarithm fatigue equation. The theoretical fatigue lives of concretes containing mineral additions get enhanced in different extent as compared to control concrete. The concrete containing SF and FA in the amount of 10 and 20 % by weight of binder respectively has shown the best flexural fatigue performance, which is much better than that of the control concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call