Abstract
The aim of this study is to investigate the effects of using mineral additives on Self compacting Mortar's (SCM) strength and viscosity properties. As Self-compacting concrete (SCC) contains less coarse aggregate than conventional concrete, mortar forms the basis of the design of SCC. Therefore, this study was found to be appropriate to use mortar. In addition, the properties of SCC such as required strength, durability and workability makes a good production of concrete inevitable. While Providing this properties, it has been presented in many studies that mineral additive (silica fume, fly ash, limestone powder, blast furnace slag etc.) and certain amount of powder material requirement is essential especially in terms of workability and consistency of SCC. Furthermore, it was aimed to prevent environmental health threats by wastes released disorderly and to add new powder material to be used in SCC and finally to reduce the cost of both transport and cement by using limestone and waste brick powder. For this purpose, 23 types of mortars, in which cement was partially replaced of limestone and waste brick powder, were produced. The mini slump flow and V-funnel tests were used to assess the workability and the self compactivity properties of the fresh mortars, and the viscosity of mortars were also measured. The hardened properties of SCM specimens including the compressive strength and tensile strength in bending were investigated and all tests were performed for 3, 7, 28 and 91 days. Moreover, capillary water absorption test were performed and, total water absorption and porosity rates of all specimens were measured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Pamukkale University Journal of Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.