Abstract

Additive manufacturing (AM) has recently become one of the key manufacturing processes in the era of Industry 4.0 because of its highly flexible production scheme. Due to complex thermal cycles during the manufacturing process itself and special solidification conditions, the microstructure of AM components often exhibits elongated grains together with a pronounced texture. These microstructural features significantly contribute to an anisotropic mechanical behavior. In this work, the microstructure and mechanical properties of additively manufactured samples of 316L stainless steel are characterized experimentally and a micromechanical modeling approach is employed to predict the macroscopic properties. The objective of this work is to study the effects of texture and microstructural morphology on yield strength and strain hardening behavior of face‐centered cubic additively manufactured metallic components. To incorporate the texture in synthetic representative volume elements (RVE), the proposed approach considers both the crystallographic and grain boundary textures. The mechanical behavior of these RVEs is modeled using crystal plasticity finite element method, which incorporates size effects through the implementation of strain gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.