Abstract

Because of ion exchange properties, the presence of layered double hydroxides (LDHs) influences passivation process of reinforcement embedded in geopolymer concrete. In this study, the ion exchange behavior of MgAl–NO2-LDHs and its effect on the characteristics of passivation film and electrochemical behavior of passive reinforcement in simulated slag-fly ash-waste ceramic powders geopolymer solution (SGP) are extensively investigated. The results indicate that LDHs with layered structure improve the protection efficiency of adsorption layer in SGP. Further, the intercalated NO2− is efficiently exchanged with OH− in SGP, thus increasing the thickness and corrosion resistance of the formed passivation film. However, because the adsorption layer halts NO2− release process, the beneficial effect is mainly observed during later immersion stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.