Abstract

A high yield, photoactivated cross-linking reaction between a modified tRNA and RNase P RNA was used as a quantitative assay of substrate binding affinity. The cross-linking assay allows the effects of metal ions on substrate binding to be measured independently and in the absence of the pre-tRNA cleavage reaction. The results of this assay, in conjunction with the conventional cleavage assay, support the following conclusions about the nature of the RNase P RNA-tRNA binding interaction. (i) Monovalent cations act primarily to enhance enzyme-substrate binding, presumably by functioning as counterions. This enhancement can be attributed to a reduction in the tRNA off-rate. (ii) Although divalent cation is required for cleavage, the enzyme-substrate complex can form in the absence of divalent cation; the essential role of divalent cation in the reaction is thus catalytic. (iii) Ca2+ is as efficient as Mg2+ in promoting binding but supports catalysis only at a low rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.