Abstract

Transport of protons and water through water-filled, phase-separated cation-exchange membranes occurs through a network of interconnected nanoscale hydrophilic aqueous domains. This paper uses numerical simulations and theory to explore the role of the mesoscale network on water, proton, and electrokinetic transport in perfluorinated sulfonic acid (PFSA) membranes, pertinent to electrochemical energy-conversion devices. Concentrated-solution theory describes microscale transport. Network simulations model mesoscale effects and ascertain macroscopic properties. An experimentally consistent 3D Voronoi-network topology characterizes the interconnected channels in the membrane. Measured water, proton, and electrokinetic transport properties from literature validate calculations of macroscopic properties from network simulations and from effective-medium theory. The results demonstrate that the hydrophilic domain size affects the various microscale, domain-level transport modes dissimilarly, resulting in different distributions of microscale coefficients for each mode of transport. As a result, the network mediates the transport of species nonuniformly with dissimilar calculated tortuosities for water, proton, and electrokinetic transport coefficients (i.e., 4.7, 3.0, and 6.1, respectively, at a water content of 8 H2O molecules per polymer charge equivalent). The dominant water-transport pathways across the membrane are different than those taken by the proton cation. Finally, the distribution of transport properties across the network induces local electrokinetic flows that couple water and proton transport; specifically, local electrokinetic transport induces water chemical-potential gradients that decrease macroscopic conductivity by up to a factor of 3. Macroscopic proton, water, and electrokinetic transport coefficients depend on the collective microscale transport properties of all modes of transport and their distribution across the hydrophilic domain network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call