Abstract

Recent studies have shown that water absorption changes the mechanical and transport properties of Nafion by orders of magnitude. The unusually large changes in properties are indicative of microstructural changes induced by water absorption. The experimental findings of changes in proton conduction, water transport, elastic modulus, and stress relaxation are highlighted and explained by microphase segregation of hydrophilic domains resulting from water absorption. Water absorption is proposed to cause clustering of hydrophilic sulfonic acid groups and water within a hydrophobic polytetrafluoroethylene matrix. The hydrophilic domains form a network that facilitates transport and create physical cross-links that stiffen Nafion. At high temperature and low water activity, the entropy of de-mixing breaks the clusters apart, causing a large drop in elastic modulus of the polymer and a large decrease in the rates of water and proton transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.