Abstract
Different types of carbon nanostructure materials have been grown on nano-sized transition metal oxide based catalyst particles by catalytic chemical vapour deposition. The present investigation reveals an important role of melting or surface melting of oxide catalysts for the growth of carbon nanostructure materials. In the reducing environment prevailing during the growth of nanostructures, oxide catalysts are reduced to metals, which may act as a template for the growth of carbon nanostructure materials. Flow rate of acetylene gas is crucial in catalyzing the growth, as high flow rate of acetylene may cover the catalyst particles with a layer of decomposed carbon, rendering the particles incapable of playing the role of catalyst. The size of the catalyst and the extent of melting, determined primarily by the extent of doping, are important in deciding whether the conditions are favourable for the growth of multi walled carbon nanotube, nanofiber or other nanostructures. Smaller particle size and low doping level favour the growth of multi walled carbon nanotube while growth of nanofiber is commonly observed with larger particles and higher doping level. The size (i.e. diameter) of the nanostructures growing around the catalyst is proportional to the particle size of the catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.