Abstract

The maximum fracture load of a notched concrete beam has been related to the local fracture energy at the cohesive crack tip region analytically in this paper, and then the correlation between the size effects on the maximum fracture loads and the RILEM specific fracture energy is established. Two extreme conditions have been established, namely zero crack-tip bridging with zero local fracture energy and maximum crack-tip bridging with the maximum size-independent fracture energy. It is concluded that the local fracture energy at the crack tip region indeed varies with the initial crack length and the size of specimen. The tri-linear model for the local fracture energy distribution is confirmed by using the proposed simple analytical solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.