Abstract

Incorporation of hydrophobic component into amphiphilic polycations structure is frequently accompanied by an increase of antimicrobial activity. There is, however, a group of relatively hydrophilic polycations containing quaternary ammonium moieties along mainchain, ionenes, which also display strong antimicrobial and limited hemolytic properties. In this work, an influence of a hydrophobic side group length on antimicrobial mechanism of action is investigated in a series of novel amphiphilic ionenes. High antimicrobial activity was found by determination of minimum inhibitory concentration (MIC) and minimum bactericidal, and fungicidal concentration (MBC and MFC) in both growth media and a buffer. Biocompatibility was estimated by hemolytic and mammalian cells viability assays. Mechanistic studies were performed using large unilamellar vesicles (LUVs) with different lipid composition, as simplified models of cell membranes. The investigated ionenes are potent and selective antimicrobial molecules displaying a decrease of antimicrobial activity correlated with increase of hydrophobicity. Studies using LUVs revealed that the cardiolipin is an essential component responsible for the lipid bilayer permeabilization by investigated ionens. In contrast to relatively hydrophilic ionenes, more hydrophobic polymers showed an ability to stabilize membranes composed of lipids with negative spontaneous curvature in a certain range of polymer to lipid ratio. The results substantially contribute to the understanding of antimicrobial activity of the investigated class of polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.