Abstract

Phthalate esters (PAEs) are added to various products as plasticizers. Plastic waste containing PAEs enters landfills as they age with use. However, the influence of microenvironmental changes on the occurrence of PAEs during landfill stabilization is still unknown. In this study, we evaluated the relationship between the physical and chemical properties of leachate, the structure of bacterial communities and the chemical structure of dissolved organic matter (DOM), and the occurrence of PAEs and the mechanism underlying their responses to changes. Landfill leachate in different stabilization states had high Cl− and NH4+ contents and its metal element (Cr, Pb, and Zn) contents generally decreased with the increase in landfill ages. Proteobacteria, Bacteroidetes, and Firmicutes were important phyla and had an average relative abundance of 68.63%. The lignin/carboxylate-rich alicyclic molecule structure was the main component of DOM (56%–64%). Of the 6-priority controlled PAEs in leachate, di-n-butyl phthalate was the most abundant (1046 μg L−1), while butyl phthalate was not detected. The results showed that pH, the relative abundance of Chloroflexi, and the value of SUVA254 can directly influence the occurrence of PAEs in leachate. The positive and negative effects vary depending on the PAE content and molecular weight. DBP and DEHP have higher environmental risks in the aquatic system. These results are intended to provide a scientific basis for the evolutionary characterization of the microenvironment in complex environmental systems and the control of novel contaminants, such as PAEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call