Abstract

Material-dependent parameters have an important impact on the efficiency of light polymerization. The present in vitro study aimed to investigate the influence of the increment thickness and shade of nano- and nanohybrid resin composites on the transmission of curing light. Three contemporary resin composites were evaluated: Tetric EvoCeram® (TEC); Venus Diamond® (VD); and Filtek Supreme XTE® (FS XTE). Light transmission (LT) was recorded in accordance with the sample thickness (0.5 to 2.7 mm) and the shade. Polymerized samples were irradiated for 10 s each using the high-power LED curing light Celalux 2 (1900 mW/cm2). LT was simultaneously recorded using the MARC Patient Simulator (MARC-PS). LT was strongly influenced by the composite layer thickness. For 0.5 mm-thick samples, a mean power density of 735 mW/cm2 was recorded at the bottom side. For the 2.7 mm samples, a mean power density of 107 mW/cm2 was measured. Only LT was markedly reduced in the case of darker shades. From A1 to A4, LT decreased by 39.3% for FS XTE and 50.8% for TEC. Dentin shades of FS XTE and TEC (A2, A4) showed the lowest LT. The thickness and shade of resin composite increments strongly influences the transmission of curing light. More precise information about these parameters should be included in the manufacture manual.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call