Abstract

Fold-and-thrust belts (FTBs) evolve over a mechanically weak basal décollement that separates the overlying intensely deformed rocks from the underlying less deformed ones. Although deformation structures in FTBs commonly show lateral continuity, a closer inspection reveals distinctive variations in structural style (e.g., fold style) along and across mountain belts. This study uses laboratory-scale viscous models to investigate the influence of lateral décollement strength variations on the spatio-temporal evolution of strain patterns in FTBs. These experiments, simulating crustal-scale deformation, show notable changes in the mode of tectonic wedge growth, including the topographic evolution and ductile strain pattern distribution. For example, the deformation front propagates faster over weakly coupled décollement than the laterally adjacent strongly coupled segment, leading to along-strike variations of the topographic slope and curved outline of the deformation front. Constrictional strain, characteristic of regions of weak coupling, is transient and replaced by flattening strain beyond ∼20 % bulk shortening. The latter prevails in regions over strong décollement, whereas complex strain histories mark the transition zone between weak and strong décollements. Based on our modelling results, we propose that variations in décollement strength may cause the segmentation of deformation processes and the development of transverse faults in FTBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call