Abstract

In typical terahertz time-domain spectroscopy systems, the use of the lock-in technique is necessary because of the low current induced at the receiver so that the laser pump beam must be modulated (chopped) at a frequency much lower than the laser repetition rate. This work shows that, in the case of semi-insulating GaAs (SI-GaAs) antennas, this modulation has an important effect on the antenna current and consequently, on the radiated electromagnetic pulse. There exists a threshold bias (whose value depends on the chopping frequency) where an abrupt increase in the current and consequently, in the terahertz emission takes place. The calculated energy of the pulse below and above the threshold shows that the energy doubles. The exact bias voltage at which this occurs changes with the laser modulation frequency when this is below 350 Hz, but at higher frequencies, the threshold remains almost constant. The experiments show that the responsibility for this behavior is the S-shape negative differential conductance exhibited by SI-GaAs originated by a slow field-enhanced charge trapping mechanism, which is also an important source of noise at the receiver of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call