Abstract

The phenomena of solid particles suspensions, in a turbulent flow, can more conveniently be described by stochastic models than by diffusion models, particularly in the case of relatively coarse particles. The fundamental difficulties of using such models are principally due to the difficulty of performing direct measurements of probabilities, because the number of observations (or tests) necessary to obtain physically representative values is important (theoretically infinite). We have used such a model to describe the movement of spheres in an inclinable pipe. To do so, we have identified the movement through a Markov process which permits us to show that we can characterize it by the limit distribution for passage probabilities in a cross section. We have used a special system of close-circuit television to measure it, doing a sufficiently large number of observations for the measurements to be significant. In the case of a vertical pipe, the phenomena is one-dimensional. By using the model stochastic displacement, we obtain a differential equation which it is possible to integrate by assuming an obviously constant radial dispersion. The interpretation of limit distributions for passage probabilities and visual observations of particles movement in the pipe have caused us to conclude that the mean displacment is due, on one hand, to a radial acceleration bounded to a stochastic rotation of the flow and, on the other hand, to the effect of the mean velocity gradient. The experimental results show that the radial dispersion is a function of the relative dimension of particles with respect to the macroscale of the turbulence. In the case of an inclined pipe, a two-dimensional stochastic model of the displacement is possible, but the integration of the equation is quite complicated and may be done numerically. We have prefered a two-dimensional simulation model. The results of the simulations permit us to obtain a limit repartition of passage probabilities, the moments of which we have compared with those that we have measured. These comparisons show that the model obviously represents the phenomena when the pipe is horizontal or very slightly inclined but differs in the near vertical case. This is due to the simplicity of the model in which we neglect the radial acceleration we have considered previously and the effect of which is negligible in comparison with gravity when the pipe is inclined. The interpretation of the measurements by comparison of moments with the two-dimensional model shows that the angular dispersion of solid particles is essentially due to big eddies and that the particle diameters are not essential parameters in this case. By associating this conclusion with that obtained previously concerning the radial dispersion, it seems that the eddies bigger than the macroscale of turbulence may be of capital importance in the dispersion of solid particles and that it will be of practical interest to characterize them as a function of a mean parameter of the flow. The study of the movement of sufficiently large particles seems to be a method which is able to give this result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.