Abstract

Abstract An investigation on the possibility of enhancement of soft X-ray (SXR) (900–1600 eV) emission from a fast miniature plasma focus (FMPF) device of 235 J (at 14 kV) storage energy through doping of operating gas was performed. Neon (Ne), the operating gaseous medium, was doped with krypton (Kr) in different volumetric ratios at various operating pressures ranging from 2 to 14 mbar. The 1% Kr doping increased the average optimum SXR emission efficiency from 0.47% to 0.6% without enhancing the hard X-ray (HXR) (>1600 eV) emission. The Kr doping influenced the major pinching characteristics such as focusing efficiency and time to pinch with consequential effect on X-ray emissions. Synchronous operation of the 4 pseudo-spark gap (PSG) switches was mandatory for efficient discharge current delivery to the electrodes. A drastic improvement in the pinching efficiency was obtained with replacement of old and worn out PSG switches with the new ones. Optical imaging of current sheath dynamics was performed using gated ICCD camera to verify the normal operation of the device after the PSGs replacement. A numerical simulation analysis on the 2 cm long stainless steel tapered anode, used in this study, was done to predict the maximum SXR emission efficiency and the peak operating gas pressure. An analysis on the amount of SXR fluence generated at the source position and the proportion of it reaching the target position is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.