Abstract
Purpose The purpose of this paper was investigation and comparison of electrical and optical properties of crystalline silicon solar cells with ITO or TiO2 coating. The ITO, similar to TiO2, is very well transparent in the visible part of optical radiation; however, its low resistivity (lower that 10-3 Ohm/cm) makes it possible to use simultaneously as a transparent electrode for collection of photo-generated electrical charge carriers. This might also invoke increasing the distance between screen-printed metal fingers at the front of the solar cell that would increase of the cell’s active area. Performed optical investigation showed that applied ITO thin film fulfill standard requirements according to antireflection properties when it was deposited on the surface of silicon solar cell. Design/methodology/approach Two sets of samples were prepared for comparison. In the first one, the ITO thin film was deposited directly on the crystalline silicon substrate with highly doped emitter region. In the second case, the TCO film was deposited on the same type of silicon substrate but with additional ultrathin SiO2 passivation. The fingers lines of 80 μm width were then screen-printed on the ITO layer with two different spaces between fingers for each set. The influence of application of the ITO electrode and the type of metal electrodes patterns on the electrical performance of the prepared solar cells was investigated through optical and electrical measurements. Findings The electrical parameters such as short-circuit current (Jsc), open circuit voltage (Voc), fill factor (FF) and conversion efficiency were determined on a basis of I-V characteristics. Short-circuit current density (Jsc) was equal to 32 mA/cm2 for a solar cell with a typical antireflection layer and 31.5 mA/cm2 for the cell with ITO layer, respectively. Additionally, electroluminescence of prepared cells was measured and analysed. Originality/value The influence of the properties of ITO electrode on the electrical performance of crystalline silicon solar cells was investigated through complex optical, electrical and electroluminescence measurements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have