Abstract

Lithium-oxygen (Li-O2) batteries are nowadays among the most appealing next-generation energy storage systems in view of a high theoretical capacity and the use of transition-metal-free cathodes. Nevertheless, the practical application of these batteries is still hindered by limited understanding of the relationships between cell components and performances. In this work, we investigate a Li-O2 battery by originally screening different gas diffusion layers (GDLs) characterized by low specific surface area (<40 m2 g-1) with relatively large pores (absence of micropores), graphitic character, and the presence of a fraction of the hydrophobic PTFE polymer on their surface (<20 wt %). The electrochemical characterization of Li-O2 cells using bare GDLs as the support indicates that the oxygen reduction reaction (ORR) occurs at potentials below 2.8 V vs Li+/Li, while the oxygen evolution reaction (OER) takes place at potentials higher than 3.6 V vs Li+/Li. Furthermore, the relatively high impedance of the Li-O2 cells at the pristine state remarkably decreases upon electrochemical activation achieved by voltammetry. The Li-O2 cells deliver high reversible capacities, ranging from ∼6 to ∼8 mA h cm-2 (referred to the geometric area of the GDLs). The Li-O2 battery performances are rationalized by the investigation of a practical Li+ diffusion coefficient (D) within the cell configuration adopted herein. The study reveals that D is higher during ORR than during OER, with values depending on the characteristics of the GDL and on the cell state of charge. Overall, D values range from ∼10-10 to ∼10-8 cm2 s-1 during the ORR and ∼10-17 to ∼10-11 cm2 s-1 during the OER. The most performing GDL is used as the support for the deposition of a substrate formed by few-layer graphene and multiwalled carbon nanotubes to improve the reaction in a Li-O2 cell operating with a maximum specific capacity of 1250 mA h g-1 (1 mA h cm-2) at a current density of 0.33 mA cm-2. XPS on the electrode tested in our Li-O2 cell setup suggests the formation of a stable solid electrolyte interphase at the surface which extends the cycle life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.