Abstract

Electron-beam propagation from a gas-filled diode is investigated. The beginning portion of the electron beam pulse creates an ion channel not only inside the diode but also in the region beyond the anode. A theoretical model is developed for the space-charge-limited current of a relativistic electron beam propagating through an ion channel. A simple analytical expression for the space-charge-limited current is obtained within the context of a thin-beam approximation, where the conducting-tube radius is much larger than the beam radius. The beam current propagating through an ion channel is measured experimentally for a mildly relativistic electron beam. Whenever the ion density inside the diode is the same as the beam electron density, the diode is short-circuited. The ion-channel density at the short-circuiting time is calculated numerically and is used to estimate the space-charge-limited current. It is shown that the experimental data agree well with the analytical results predicted by the theoretical model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call