Abstract

We report on the quantum dot (QD) size, temperature, and inter-dot coupling dependence on the optical absorption and emission for PbS QD thin films. Inter-dot coupling is induced by ligand exchange from oleic acid to 1,2-ethanedithiol, and the expected band gap red-shift observed for coupled QD thin films is accompanied by a modification to the temperature-dependence of the band gap energy. The amplitude and temperature dependence of the photoluminescence (PL) Stokes shift support recombination via a mid-gap state and also indicate that the application of band gap-specific models to fit the temperature dependence PL peak energy is inadequate. Electronically coupled QD thin films show PL quenching with decreasing temperature, following a Boltzmann model which is consistent with thermally activated carrier transport. Enhancing the inter-dot coupling results in the dynamic PL decay signal changing from single- to bi-exponential behavior, reveals a size-dependent transport activation energy, and yields a negative temperature dependent band gap energy for the smallest QD diameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call