Abstract

Slot-die coating (SDC) technology is a potential approach to mass produce large-area, high-performance perovskite solar cells (PSCs) at low cost. However, when the interface in contact with the perovskite ink has low wettability, the SDC cannot form a uniform pinhole-free perovskite film, which reduces the performance of the PSC. To address this issue, in this study, the wettability of the hole transport layer (HTL) interface was investigated in depth by analyzing the variation of wettability with process and its correlation with the roughness of the HTL interface. As a result, it was found that SDC could increase the roughness of the HTL interface to improve wettability and form a uniform high-quality perovskite layer without pinholes, and furthermore, SDC-based NiOx/Me-4PACz HTL suppressed energy losses at the HTL/perovskite interface. In addition, a unit cell achieved 19.17% of efficiency with long-term stability and lab cell-sized modules showed up to 17.42%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.