Abstract
The relationship between interface charge and surface potential of a MOS capacitor is examined when interface charge inhomogeneities are present. For practical values of the interface charge variance, the relation between interface charge and surface potential is found to be quite linear. High surface state densities and high impurity concentrations tend to damp the potential fluctuations and to increase the linearity. The magnitude of the potential deviation for a given charge deviation increases from flat band to weak inversion and decreases again in strong inversion, due to screening, but the linearity is found to be best in weak inversion. The original Nicollian-Goetzberger analysis of the MOS a.c. conductance technique uses a Gaussian potential distribution and an equivalent circuit consisting of an array of parallel surface state branches connected to a single oxide capacitance. We compare this model with a patchwork model, using a Gaussian interface charge density distribution and an equivalent circuit with distributed oxide capacitance. It is found that in depletion, for practical charge densities, the patchwork model interpretation of conductance peaks does not lead to a very different result than the random charge distribution model interpretation. Both models agree very well on surface state density and variance of the interface charge distribution, but a large discrepancy on the capture cross section of the surface states is possible.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have