Abstract

Chemical stability is closely associated with the transformations and bioavailabilities of engineered nanomaterials and is a key factor that governs broader and long-term application. With the growing utilization of molybdenum disulfide (MoS2) nanosheets in water treatment and purification processes, it is crucial to evaluate the stability of MoS2 nanosheets in aquatic environments. Nonetheless, the effects of anionic species on MoS2 remain largely unexplored. Herein, the stability of chemically exfoliated MoS2 nanosheets (ceMoS2) was assessed in the presence of inorganic anions. The results showed that the chemical stability of ceMoS2 was regulated by the nucleophilicities and the resultant charging effects of the anions in aquatic systems. The anions promote the dissolution of ceMoS2 by triggering a shift in the chemical potential of the ceMoS2 surface as a function of the anion nucleophilicity (i.e., charging effect). Fast charging with HCO3- and HPO42-/H2PO4- was validated by a phase transition from 1T to 2H and the emergence of MoV, and it promoted oxidative dissolution of the ceMoS2. Additionally, under sunlight, ceMoS2 dissolution was accelerated by NO3-. These findings provide insight into the ion-induced fate of ceMoS2 and the durability and risks of MoS2 nanosheets in environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call