Abstract

AbstractFor the first time, a novel nanohybrid based on nickel phosphide (Ni2P) nanoparticles and molybdenum disulfide (MoS2) nanosheets was facilely synthesized for enhancing flame retardancy and smoke suppression of thermoplastic polyurethane (TPU). The synergistic effect on flame retardancy is proposed. TPU composite with 2 wt% Ni2P/MoS2 hybrid exhibits the best overall flame retardancy, while TPU composites with the same amount of individual Ni2P nanoparticles and MoS2 nanosheets are average in performance. Specifically, the 41.2% reduction of peak heat release rate (PHRR) is achieved for TPU/Ni2P/MoS2 composite, which is only 16.8% and 26.4% for TPU/Ni2P and TPU/MoS2 composites, respectively. In addition, a more intact protective char layer of TPU/Ni2P/MoS2 composite can be observed. These results clearly suggest the synergistic effect between Ni2P nanoparticles and MoS2 nanosheets. It is hypothesized that physical barrier effect and chemical catalytic ability of Ni2P/MoS2 hybrid contribute to the dramatic reduction of heat release and smoke production. The strategy proposed here is a simple yet efficient approach to fabricate high‐performance MoS2‐based flame retardants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.