Abstract

The influence of three inoculum densities of Glomus caledonius and G. epigaeus and two temperature/light intensity conditions was investigated on Trifolium repens. The significance of inoculation was compared to the significance of naturally occurring vesicular–arbuscular mycorrhizal (VAM) fungi and to application of soluble phosphate fertilizer. Increasing density of inoculum and the highest temperature/light intensity condition tested increased VAM infection, whereas only small differences were found between efficiency of the two introduced VAM fungi. The presence of naturally occurring VAM fungi proved as efficient in establishing infection as the most successful inoculations. Some interactions among the investigated parameters were found for several recordings. The increase in VAM infection was followed by an increase in number of nodules; in uptake of phosphorus, nitrogen, zinc, and copper; and in growth of roots and shoots. The calculated inflow of phosphate, zinc, and copper into roots was not associated with inoculum density, VAM species or temperature/light conditions. Compared to an uninoculated control without application of phosphate, inoculation with the highest spore density increased (after 18 weeks growth) the dry weight of shoot 52 fold and 7 fold for G. caledonius, and 121 fold and 9 fold for G. epigaeus at low and high temperature/light conditions, respectively. It was also found that VAM increased weight per nodule 52% when roots with no or sparse VAM infection were compared to roots with low to maximal VAM infection and 98% when roots with low VAM infection were excluded. Application of phosphate fertilizer enhanced nodulation and growth of non–mycorrhizal plants to a level similar to that of the most heavily VAM infected plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call