Abstract

In hybrid-additive manufacturing using powder bed fusion with laser beam (PBF-LB) conventionally manufactured base-bodies are overprinted with an individual geometry. In this paper, the influence of deviations of the initial layer thickness, and the focal plane on the component properties are investigated. For separate consideration of the individual effects, purely additive (AlSi10Mg) and hybrid-additive (AlSi10Mg on EN AW6082) test specimens were manufactured. The layer thickness was varied from 0 to 200 µm, and the focal plane between 0 and -8 mm. The influence on the microstructure due to the altered induced energy input is analyzed. These findings are correlated with respect to the tensile strength and material hardness. The highest strength is achieved with an initial layer thickness of 50 µm. A hardness decrease of 8 % due to hot stress cracks in the interface is avoided by targeted shifting of the focal plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call