Abstract

In the field of oxide semiconductor thin-film transistors (TFTs), the occurrence of charge trapping in the gate dielectric and interfaces presents significant challenges to their operational stability and reliability. In this study, we present high-performing amorphous Ga2O3 TFTs created using atomic layer deposition with varying indium doping concentrations. The channel length (Lch) and channel width (Wch) are 50 and 200 μm, respectively. As the Indium concentration increases from 0% to 60%, the charge trap density (Nit) decreases, resulting in a smaller hysteresis window. The TFTs with a doping concentration of 20% are particularly noteworthy, exhibiting high field-effect mobility (22.6 cm2 V−1 s−1), lower subthreshold swing (160 mV/dec) than amorphous Ga2O3 channel devices, a high on-off current ratio (109), an appropriate threshold voltage (−1 V), and a substantial output current (26 mA/mm at VGS = 16 V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.