Abstract

The influence of silylene-bridged bis(indenyl) ligand substitution, especially benzannelation and 2-methyl substitution, on methylaluminoxane-activated metallocene-catalyzed ethene/1-octene copolymerization in toluene at 40 °C was investigated. 2-Methyl substitution gave significantly higher molecular masses at the expense of catalyst activity, whereas benzannelation promoted 1-octene incorporation and randomness of the resulting poly(ethene-co-1-octene) copolymers. Force field calculations based on steric arguments were used to explain experimental copolymerization results. Activation energy differences between ethene and 1-octene insertion accounted for improved 1-octene incorporation in the case of benzannelated metallocenes. According to 13C-NMR microstructure analysis, copolymerization followed first-order Markov statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.