Abstract

Mechanisms that govern priming and degranulation of human mast cells (MCs) remain elusive. Besides, most of our knowledge is based on experiments from which data only reflect an average of all stimulated cells. This study aims at investigating the effects of proinflammatory cytokines IL-6, IL-33, and TNF-α on IgE-dependent and IgE-independent activation of individual MCs. MCs were derived from CD34+ progenitors isolated from 50 mL whole blood from 4 healthy controls and 5 birch pollen allergic patients. Passively sensitized MCs were preincubated with IL-6, IL-33, or TNF-α and stimulated with anti-IgE/birch pollen allergen or substance P, the latter being a ligand for the G-protein-coupled MRGPRX2-receptor. Activation-i.e., upregulation of CD203c-and anaphylactic degranulation-i.e., appearance of CD63-were measured using flow cytometry. Preincubation with IL-33 demonstrated upregulated CD203c density without degranulation. Subsequent IgE-dependent stimulation (anti-IgE/birch pollen allergen) resulted in higher appearance of CD63 as compared to cells without preincubation, indicating IL-33 to exert a priming effect (P = 0.04). IL-6 only increased allergen-specific responses but to a lesser extent than IL-33. Combination of IL-33/IL-6 had a synergistic effect, demonstrating more degranulation in response to allergen. TNF-α had no effect on IgE-mediated activation, nor synergistic effects with IL-33. Stimulation with substance P resulted in degranulation that could not be enhanced by preincubation. In conclusion, IL-33, and in a lesser extent IL-6, prime individual MCs for subsequent IgE-mediated activation. Moreover, this priming effect is synergistic. In contrast, none of the cytokines had a priming effect on MRGPRX2-mediated activation of MCs. © 2017 International Clinical Cytometry Society.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call