Abstract

Although hydrogen has been shown to enhance the thermionic emission properties of nitrogen-incorporated diamond cathodes, the effect diminishes when these cathodes are heated to temperatures in excess of 700 °C, possibly due to the hydrogen desorbing from the diamond. In order to further examine this behavior, this work examines the thermionic emission properties of a nitrogen-incorporated diamond film grown by chemical vapor deposition in a hydrogen-methane-nitrogen plasma. The film was tested for thermally stimulated electron emission at temperatures ranging from 500 to 900 °C in an as-grown state and after exposure to a hydrogen plasma treatment. Emission current increased, as described by the Richardson equation for thermal emission up to ∼ 700 °C. Above ∼ 800 °C the thermionic emission current was observed to diminish, an effect attributed to the loss of hydrogen from the diamond. Recovery of the hydrogen effect was explored by exposing the diamond film to a low-energy hydrogen plasma. The thermionic emission current at temperatures below ∼700 °C after this hydrogen plasma exposure was observed to increase by four orders of magnitude over the thermionic emission current observed in the initial (as-grown) test. Possible explanations for this emission current increase are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call