Abstract

Fenton-treated diamond nanoparticles have been submitted to hydrogen reduction at 500 °C with the purpose of modifying the nature of the functional groups present on the diamond surface. The nature of the functional groups on the diamond samples was characterized by a combination of spectroscopic and analytical techniques. In particular, Fourier-transformed infrared spectroscopy, temperature-programmed desorption, and X-ray photoelectron spectroscopy (XPS) show the decrease in the population of carboxylic acids, esters, and anhydrides after hydrogen treatment. XPS also shows a decrease on the oxygen content after the hydrogen treatment of the diamond nanoparticles and lower electronegativity of the carbons as assessed by the lower binding energy values. Although Fenton-treated diamond colloids in water changes the zeta potential from positive to negative values as a function of the pH, hydrogen annealing and the disappearance of the carboxyl groups determines that the zeta potential of the resulting sample remains positive in the complete pH range. Deposition of gold nanoparticles was carried out by the polyol method consisting on the reduction of HAuCl4 by hot ethylene glycol in the presence of the support. TEM analysis shows a variation of the average gold nanoparticle size that decreases after hydrogen reduction of carboxylic groups and becomes smaller for low gold loadings. The catalytic activity of the diamond supported gold nanoparticles as a function of the surface annealing treatment and gold loading was evaluated for the natural sunlight-assisted peroxidation of phenol by H2O2. It was observed that the most efficient sample was the one having lower gold nanoparticle size that was obtained for diamond samples reduced by hydrogen at 500 °C after the Fenton treatment and having low gold loading (0.05 wt %). Turnover frequencies above 2400 and 940 h(-1) were obtained for phenol degradation and H2O2 decomposition, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.