Abstract
A series of Co2Z-type Ba–Sr nanohexaferrites Ba1.5Sr1.5Co2−zHozMnxNiyFe24−x−yO41 (z = 0.0, 0.05, 0.10, 0.15, 0.20, x = y = 0.0, 0.25, 0.5, 0.75, 1.00) have been synthesized using sol–gel auto-combustion synthesis route. The effect of Ho–Ni–Mn substitutions on crystallographic and magnetic properties of synthesized nanohexaferrites was investigated using XRD, VSM, and Mossbauer spectroscopy. Microstructural analysis showed single-phase crystal structures without any impurities and hexagonal with the space group P63/mmc. The average variation in crystallite size ranges from 43 to 60 nm with a slight increase in X-ray density and appreciable decrease in porosity was observed for different dopants. FE-SEM (Nova Nano SEM-450) substantiates the hexagonal structure and HR-TEM images assisted with SAED pattern confirm the crystalline quality and FWHM of the material, which significantly support the XRD results. FTIR spectra showed two characteristic metal stretching peaks in the range of 400–600 cm−1 due to the substitution of Ho–Ni–Mn. Magnetic measurements show maximum magnetic saturation (Ms) at 44.04 emu g−1 and elevated value of coercivity (Hc) 224Oe imparting typical characteristics of soft ferrite with high coercivity. Mossbauer analysis with least squares fit sextets of six distinguishable sites at room temperature for all samples substantially supports the results of VSM. The materials with large coercivity are useful in permanent magnet applications. The prepared composites could be useful for applications in microwave absorbing materials, magnetic storage, and the miniaturization of antennas for wireless communication devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have