Abstract

In this study, In2O3/Ag/MoO3 (IAM) nano-multilayer films are designed, and optimum thickness of each layer is calculated. These films were deposited by thermal evaporation technique and then annealed in air atmosphere at different temperatures for 1 h. The effects of annealing temperature on electrical, optical, and structural properties of the IAM system were investigated. The UV–visible–near-IR transmittance and reflectance spectra confirmed that the annealing temperature has significant influence on the electro‐optical characteristics of IAM films. High-quality IAM films with a low sheet resistance of 8.2 (Ω/□) and the maximum optical transmittance of 85 % at 120 °C annealing temperature were obtained. The effect of heat treatment on surface roughness of the layers was also investigated. Figure-of-merit quantity showed that the IAM films annealed at 120 °C have the best performance. X-ray diffraction patterns showed that the crystallinity of the structures enhanced with increase in annealing temperature. Organic light-emitting diodes (OLEDs) were fabricated on IAM anodes. The current density–voltage–luminance (J–V–L) characteristic measurements show that the electroluminescence performances of OLED with IAM anode are improved compared with the conventional ITO-based device. The results indicate that the designed system is suitable for use as transparent conductive anode in optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call