Abstract

In the present work we investigate thin amorphous silicon film fabricated by plasma enhanced chemical vapor deposition. In particular, we analyze changes in the recorded Raman spectra caused by excitation laser irradiation. Solid phase crystallization, hydrogen diffusive outflow and Raman spectra peak shifts have been observed experimentally and analyzed numerically. The role of film thickness on all these features is pointed out. The study involves laser powers between 0.1mW and 10mW focused to a spot diameter of ∼1μm and film thicknesses between 50 and ∼2000nm. Additionally, the laser induced temperature fields were analyzed by means of numerical simulation and the Raman spectral shift trough Balkanski model. Results are correlated to structural analysis by Raman spectroscopy, optical microscopy, scanning electron microscopy and atomic force microscopy. It was found that the hydrogen content and solid phase fraction identified by Raman spectroscopy are highly sensitive to the applied excitation laser power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.