Abstract
Wildlife species exposed to habitat fragmentation are often in need of a conservation effort. The African buffalo (Syncerus caffer) is one of the key species in the Serengeti ecosystem as they form a large part of the herbivore biomass, providing ecotourism and valuable trophies. The ecosystem is a part of Tanzanias protected areas and is administrated under different management practices. Among these, we have analysed the genetic structure of buffalo (n = 68) from the Serengeti National Park (SNP), the Ngorongoro conservation area (NCA) and the Maswa game reserve (MGR). Both the sequence variation in a 493 base pair fragment of the mitochondrial D-loop and the allele frequency-distribution in 15 microsatellites suggest genetic structuring of the buffalo populations within the ecosystem. Both the allele frequency-distribution and the amount of genetic variation were high and similar in SNP and MGR, suggesting a high degree of gene flow between these locations. By comparison, the NCA buffaloes had significantly lower genetic variation and were genetically differentiated from SNP and MGR. Approximate Bayesian computation estimates suggest that the observed genetic structure is of a recent origin, indicating that the recent increases in developmental activity in the region may have influenced the genetic structure of the buffalo within the Serengeti ecosystem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have