Abstract

In this report, we describe the preparation of OMC (ordered mesoporous carbon) via a conventional templating method using mesoporous silica (SBA-15) as a Pt–Ru catalyst support for use in fuel cells. The influence of surface treatment of the carbon supports on the electrochemical properties of Pt–Ru/OMC was investigated by exposing the surface to hydrogen peroxide at concentrations of 0, 15, 30, 40, and 50 wt%. X-ray photoelectron spectroscopy (XPS) revealed that surface treatment changed the surface chemistry of the OMC samples considerably and introduced surface oxygen functional groups including C–O, CO, OC–O–H, and CO32−. The numbers of these functional groups increased with increasing concentration of H2O2 used in the surface treatment, while the average Pt–Ru nanoparticle size decreased owing to their improved dispersibility. Using CV (cyclic voltammetry), we determined that the electrochemical activity of the Pt–Ru catalyst increased with increasing H2O2 concentration used for surface treatment, up to 40 wt%, due to the introduction of oxygen functional groups. Based on these results, we have established that surface treatment influences the surface properties of OMC materials, resulting in improved electrochemical activity of catalysts for fuel cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.