Abstract

We used electrochemical testing and theoretical calculations based on density functional theory (DFT) to examine the oxygen reduction reaction (ORR) activity of platinum electrocatalyst supported on several forms of niobium oxide. Bilayer electrocatalysts were synthesized in the form of 5 nm thick Pt layers (ca. 0.01 mg/cm2), deposited on 5 or 10 nm thick niobium oxide and backed by glassy carbon (GC) electrodes. The NbO and NbO2 supports enhance the specific electrochemical activity of Pt relative to the identically synthesized baseline system of Pt on GC but have no positive effect on the mass activity. The electrochemical stability of the Pt/NbO2 bilayer system was investigated by potential cycling with up to 2500 cyclic voltammetry (CV) cycles. After 2500 cycles, data indicates minimal electrochemical area loss. With the use of DFT calculations, we have evaluated effects of oxygen incorporation on stability, electronic structure, and electrochemical activity of Pt|NbxOy systems. Calculations predict a...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.