Abstract

Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat to the environment. Hence, an alternative disposal method was evaluated by recycling the waste into fired clay brick. The brick samples were incorporated with different percentages of gypsum waste (0% as control, 10, 20, 30, 40 and 50%) and were fired at 1050 °C using 1 °C per minute heating rate. Shrinkage, dry density, initial rate of suction (IRS) and compressive strength tests were conducted to determine the physical and mechanical properties of the brick, while the synthetic precipitation leaching procedure (SPLP) was performed to scrutinize the leachability of heavy metals from the crushed brick samples. The results showed that the properties would decrease through the incorporation of gypsum waste and indicated the best result at 10% of waste utilization with 47.5% of shrinkage, 1.37% of dry density, 22.87% of IRS and 28.3% of compressive strength. In addition, the leachability test highlighted that the concentrations of Fe and Al was significantly reduced up to 100% from 4884 to 3.13 ppm (Fe) and from 16,134 to 0.81 ppm (Al), respectively. The heavy metals content in the bricks were oxidized during the firing process, which signified the successful remediation of heavy metals in the samples. Based on the permissible incorporation of gypsum waste into fired clay brick, this study promised a more green disposing method for gypsum waste, and insight as a potential towards achieving a sustainable end product.

Highlights

  • Waste is defined as the substance prescribed to be the scheduled waste or any other matter in the form of a solid, semi-solid, liquid, vapor, or gas [1]

  • The presence of CaO, MgO and Na2 O in gypsum waste were higher than in the clay soil were reported as fluxing agents that can decrease the firing temperature, lowering the energy consumption used during firing stage [20,21]

  • The properties and leachability of fired clay bricks incorporated with gypsum waste were determined

Read more

Summary

Introduction

Waste is defined as the substance prescribed to be the scheduled waste or any other matter in the form of a solid, semi-solid, liquid, vapor, or gas [1]. It could be emitted, discharged or deposited onto the environment in such a volume, composition or manner to cause pollution. Scheduled wastes are the categories of waste listed under the First Schedule of Environmental Quality Regulations 2005 [2]. Gypsum waste that arose from the chemical industry was classified as the waste containing principally inorganic constituents, which may comprise metals and organic materials

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call