Abstract
The inherent large number of hydroxyl groups of silica poses strong hydrophilicity, resulting in poor dispersibility in the natural rubber matrix. Here, the silica's surface was hydrophobically modified with [3-(triethoxysiliconyl) propyl] tetrasulfide (Si69) to improve the dispersibility and reinforce the mechanical properties of silica/natural rubber composites. The structure and morphology of modified silica were characterized by Fourier infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray electron spectroscopy (XPS), nuclear magnetic resonance spectroscopy and the contact angle. Further, the mechanical properties, dynamic mechanical properties and morphology of silica/natural rubber composites were studied with a universal electronic tension machine, dynamic thermal mechanical properties analyzer (DMA) and scanning electron microscope (SEM). The experimental results show that the Si69 was successfully grafted onto the surface of silica, thereby significantly improving the water contact angle (a 158.6% increase) and enhancing the mechanical properties of modified silica/natural rubber composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.