Abstract

Replacing cement and silica fume with glass powder to prepare ultra-high performance concrete (UHPC) is beneficial to solve the ecological problem in the field of civil engineering, but the technologies of preparation, transportation, pumping, and hardening of UHPC mainly relate to its rheological property. Therefore, this paper studied the influence of glass powder on the rheological properties of UHPC paste by performing the flow and the rheological test. Experimental results showed that when the cement and silica fume partially replaced by glass powder, the UHPC paste appears shear thickening, yield stress, plastic viscosity, and area of hysteresis loop decrease. This means that mixing glass powder can somehow inhibit the problems of segregation and bleeding of UHPC during pumping. In this manner, the dosage of the superplasticizer in UHPC is appropriately reduced, the filling capacity of UHPC during pouring is improved, and the energy required for UHPC in the pumping process is weakened. Compared with replacing cement, replacing silica fume with glass powder significantly increases the shear thickening and fluidity of UHPC paste, and at the same, reduces its yield stress and plastic viscosity. This indicates that the construction performance of UHPC is greatly improved with the replacement of silica fume. The fluidity and yield stress of UHPC paste satisfy the quadratic polynomial function relationship, and the replacement of cement and silica fume with glass powder should be less than 33% and 50%, respectively. Under this condition, the rheological properties of the UHPC paste are greatly improved and result in little negative impact on the mechanical properties of UHPC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call