Abstract
Growing evidence suggests that the hydrochemical properties of geothermal fumaroles may play a crucial role in shaping the diversity and functions of microbial communities in various environments. In the present study, the impact of geothermal furaneols on the microbial communities and their metabolic functions across the rock-soil-plant continuum was explored considering varying distances from the fumarole source. The results revealed that bacterial phylum Proteobacteria was predominant in all sample types, except in the 10 m rock sample, irrespective of the sampling distance. Archaeal phyla, such as Euryarchaeota and Crenarchaeota, were more prevalent in rock and soil samples, whereas bacterial phyla were more prevalent in plant samples. Thermoacidophilic archaeons, including Picrophilus, Ferroplasma, and Thermogymnomonas were dominant in rocks and soil samples of 1 and 5 m distances; acidophilic mesophiles, including Ferrimicrobium and Granulicella were abundant in the rhizoplane samples, whereas rhizosphere-associated microbes including Pseudomonas, Pedobacter, Rhizobium, and Novosphingobium were found dominant in the rhizosphere samples. The functional analysis highlighted the higher expression of sulfur oxidative pathways in the rock and soil samples; dark iron oxidation and nitrate/nitrogen respiratory functions in the rhizosphere samples. The findings underscore microbial adaptations across the rock-soil-plant continuum, emphasizing the intricate relationship between geothermal fumaroles and microbial communities in adjacent ecosystems. These insights offer a crucial understanding of the evolution of microbial life and highlight their pivotal roles in shaping ecosystem dynamics and functions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have