Abstract

Based on elastic stress and strain states after forming and joining processes, single and assembled parts show deviations regarding their dimensional accuracy. Therefore an analysis of selected influencing factors and their influence on the dimensional accuracy of assembled parts is performed in this paper. In this article a novel approach is presented that characterizes the impact of three geometrical shapes (convex/concave/straight) and different sheet thicknesses on the dimensional accuracy along a linked forming and joining process chain. The process chain consists of a deep drawing and a clinching process. Depending on sheet thickness, material and geometrical shape, the dimensional accuracy of single parts and joined assemblies varies. For the single parts the geometry of the specimen S-rail is used. Several types of assemblies are used for the proposed approach combining this specimen with a plane sheet or a second S-rail. The FEM-tools LS-DYNA and Abaqus, are used to demonstrate this approach. Simulations and experiments with aluminum alloy 6014, mild steel CR3 and sheet thicknesses of 0.7, 1.0 and 2.0 mm are conducted for single and assembled parts. In summary, a significant improvement of the dimensional accuracy of an S-rail assembly is demonstrated using two non-dimensional accurate single parts. Future work will be to analyze frequently occurring part segmentations for the joining technologies and to optimize material mix and sheet thicknesses in order to improve deviations of the assembly to the nominal CAD geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call