Abstract

Solution-processed ambipolar organic field-effect transistors based on dicyanomethylene-substituted quinoidal quaterthiophene derivative [QQT(CN)4] are fabricated using various gate dielectric materials including cross-linked polyimide and poly-4-vinylphenol. Devices with spin-coated polymeric gate dielectric layers show a reduced hysteresis in their transfer characteristics. Among the insulating polymers examined in this study, a new fluorinated polymer with a low dielectric constant of 2.8 significantly improves both hole and electron field-effect mobilities of QQT(CN)4 thin films to values as high as 0.04 and 0.002 cm2 V−1 s−1. These values are close to the best mobilities obtained in QQT(CN)4 devices fabricated on SiO2 treated with octadecyltrichlorosilane. The influence of the metal used for source/drain metal electrodes on the device performance is also investigated. Whereas best device performances are achieved with gold electrodes, more balanced electron and hole field-effect mobilities could be obtained using chromium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.