Abstract
In this study, in vitro intestinal lipid digestion and the physicochemical and microstructural changes of sodium caseinate-stabilized emulsions were examined after the emulsions had been digested in a model simulated gastric fluid containing pepsin for different times. The average size, size distribution, microstructure, proteolysis of interfacial proteins and lipolysis of the emulsion droplets were monitored as a function of digestion time. The emulsion droplets underwent extensive droplet flocculation, with some coalescence together with proteolysis of interfacial proteins, in simulated gastric fluid, resulting in changes in the droplet size and the microstructure of the emulsions. In general, digestion in simulated gastric fluid containing pepsin accelerated coalescence of the emulsion droplets during subsequent digestion in simulated intestinal fluid containing pancreatic lipase. However, the changes in the size, the microstructure and the proteolysis of the interfacial proteins of the emulsions under gastric conditions did not influence the rate and the extent of lipid digestion in the subsequent intestinal environment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have