Abstract
The problem of gaseous media distribution within the metallic interconnects in solid oxide fuel cells (SOFCs) and its influence on the oxidation resistance of the applied materials is currently of great interest. In the presented work, an influence of gas flow within the dual Ar-H2-H2O/air atmosphere experimental setup on the oxidation behavior of the Crofer 22APU ferritic stainless steel was investigated. Examination of the sample oxidized for 1000 h in temperature of 800 °C revealed the presence of coaxial regions on the scale surface, with the differences in scale’s thicknesses in those regions being clearly visible. Additionally, the morphology of the surface changed significantly in a function of the radial distance from the sample’s center. To further examine the phenomena of uneven gas distribution, a model of the dual-atmosphere setup was created, using Ansys Workbench software. Obtained results suggest that the correlation between scale morphology and distribution of temperature and pressure on the sample’s surface, created by gas flow in the system, can be justified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.