Abstract

Conventional plastics, such as polystyrene (PS), are widely used due to their high degradation stability, which makes them suitable for various applications. However, the downside of this property is that it results in the persistence of these plastics in the environment, contributing to plastic pollution. This paper investigated the effects of gamma-ray irradiation on the mechanical, optical, structural, thermal, and morphological properties of PS food containers subjected to natural (NW) and artificial weathering (AW). First, the PS films were exposed to a source of 60Co-γ at doses of 0, 10, and 45 kGy, and then they were subjected to NW for 0–190 days and AW for 0–500 h. The mechanical properties of the PS films (tensile strength and elongation at break) were evaluated under NW and AW conditions, revealing an acceleration factor (AF) ranging from 3.8 to 6.2. According to the results, gamma-irradiation had a complex and uneven effect on the physicochemical properties of the weathered PS films. The type of weathering and conditions under which the exposures were performed, in conjunction with the irradiation doses, provided a comprehensive analysis of the effects of gamma-ray irradiation on PS food containers. These results are relevant for extending PS food containers' longevity rather than increasing their degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.